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LETTER TO THE EDITOR 

Cylindrical Korteweg de Vries equation and Painleve 
property 

W-H Steeb, M Kloke, B M Spieker and W Oevel 
Universitat Paderborn, Theoretische PhysiL, D-4790 Paderborn,West Germany 

Received 24 May 1983 

Abstract. We demonstrate that the Lax representation for the cylindrical Korteweg de 
Vries equation can be obtained with the help of the PainlevC property of this equation. 

Recently, Weiss et a1 (1983)  have introduced what is called the Painlevt property for 
partial differential equations. They applied their method to the soliton equations (the 
Kdv, sine Gordon, KP equations etc) and found, in a remarkably straightforward 
manner, the well known Backlund transformations. 

In the present note we apply the technique to the so-called cylindrical Kdv equation 
(cKdv). The equation under consideration is given by 

ut + 6uux + uxxx + u / ( 2 t )  = 0. 

W,! - 6wxwx,  + w,,,, + w,/ (2 t )  = 0. 

( 1 )  

(2) 

Introducing the potential w defined by U = - w, we find that ( 1 )  can be written as 

An auto Backlund transformation of ( 2 )  has been given by Nakamura (1980) ,  namely 

( w ’ +  w ) ,  =;(wf- w ) ‘ - ( x  + ~ 1 ) / 6 t  

( w ’ + w ) ,  = - ( X + x l ) w : / 3 t + 2 W :  
( 3 )  

+ 2 ( ~ ’ -  w)w,, + ( w ’ -  w) ’w ,  + ( w ’ -  ~ ) / 6 t  - ( w ‘ +  ~ ) / 2 t .  

Nakamura (1980)  obtained this result with the help of the Hirota bilinear transform 
method. The inverse scattering transform for the cKdv equation is discussed by 
Calogero and Degasperis (1978a); also the conservation laws have been given by 
Calogero and Degasperis (1 978b). The isospectral eigenvalue problem associated 
with the cKdv equation ut +U,,, + uu, + u / ( 2 t )  = 0 is given by 

(to2 - ~ / 1 2  + tu /6 )  V = p V. 

Infinitely many commuting symmetries and constants of motion for explicitly time- 
dependent evolution equations with application to the cKdv equation have been studied 
by Oevel and Fokas (1983).  We show that the results given above can be obtained 
with the help of the method described by Weiss et a1 (1983).  

In the following we study ( 1 )  in a somewhat different form in order to include the 
Kdv equation, namely 

(4) 
1 

ul + uu, + 5u,,, + a u / t  = 0 
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(Tajiri and Kawamoto 1982),  where a is a real parameter. If a = 0 then we have the 
Kdv equation. Thus our results contain those of Weiss er a[ (1983).  If a = 3, then we 
have the cKdv equation and if a = 1 ,  then ( 4 )  is called the spherical K d v  equation. 
This equation is not integrable. As far as possible the parameter a will be arbitrary 
in our calculations. At the end of our calculation we find that we are forced to put 
a = 0 or a = in order to find that equation (4) is integrable. 

In the technique described by Weiss et a1 (1983)  we consider the quantities U, x 
and t in the complex plane. For the sake of simplicity we do not change our notation. 
For the field U we make the series ansatz 

If a is an integer and if it is possible to cut off this series expansion at a certain integer, 
say n (n < a), and moreover the equationsfor the fields 4, uo, U 1, . . . , U, are compatible, 
then we obtain Backlund transformations. 

Let us now perform the calculation step by step. First of all we determine the 
dominant behaviour, i.e. we determine the exponent a. Inserting the ansatz 

U ( X ,  0 - 4 %  ~ ) u ~ ( x ,  t )  (6) 

into ( 4 )  and comparing the exponents, we find that a = - 2  and the function uO is 
given by 

U O  -64;. (7) 

Next we determine the resonances. The values of j are called resonances where 
arbitrary functions of x and t can be introduced into the expansion. Inserting the 
ansatz ( 5 )  together with a = -2 into (4) we find 

c o m  m 
+ 1 U j x U k 4 j + k - 4  +kZ C ( j - 2 ) ( j - 3 ) u j X 4 j p 4  

j = O  k = O  j = O  

m m 
+ ;4, ( j  - 2)uj,x4j-3 + 3 U j x x x 4 j - *  

j = O  j = O  

m m 

j = O  j = O  
+ + ( a / t )  C u,+f-z = 0. 

The resonances m are determined from the coefficients with the factors 4jfk-’ and 
4’-’. For the coefficient with the factor 4’+‘-’ we have to put j = 0, k = m and j = m, 
k = 0. For the coefficient with the factor 4’-’ we have to put j = m. Then we find that 

(9) o = ( m  - 2)4xu,u0 - 24xu0u, + i(m - 2 ) ( m  - 3 ) ( m  - 4)4lu,. 
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Inserting (7) into ( 9 )  we find that 

O =  - 6 ( m  -4)+4(m - 2 ) ( m  - 3 ) ( m  -4) .  

Thus the resonances are given by ml = - 1 ,  m2 = 4  and m3 = 6.  The value ml  = - 1 
corresponds to the arbitrary (undefined) singularity manifold (4 = 0). We find the 
same result as for the Kdv equation. The additive term au/ t  does not change the 
resonances. 

Solving (8) we find that 

( 1 1 )  

j = 1  ui=64, ,  (12)  

(13)  j = 2  

j = 3  4 x r  + 4 x x ~ 2 - 4 ; ~ 3 + ; 4 x x x x  + ( a / t ~ x  = O  (14)  

( 4 x r  + f d x x x x  + 4 x x ~ 2 - 4 I ~ 3 + ( a / t ) 4 x ) x  = o .  (15)  

2 j = O  u o = - 6 d X  

3 2  4X4t + 452 + 24X4XXX - T 4 X X  = 0 

j = 4  compatibility condition 

Thus, if (14)  is satisfied, then (15)  is satisfied and in this case the ‘coefficient’ u4 is 
arbitrary. For j = 5 we obtain 

- 3 4 : ~ s  = (4xul+ ~ x 4 x x ) u d  + ( u O +  3 4 , 2 ) ~ 4 x  + uoxu4+ (4r + i 4 x x x  +4xu2 + ulx)u3 

(16)  1 
+ ( U ~ + % ~ ~ ) U ~ ~  +34xu3xx + ~ 2 ~ + u 2 ~ 2 ~  +zu2xxx +(a/ t )u2 .  

For m 3 3 the recursion relation for the functions uj  is given by 

+ m f l  ujxum-j-1 +$(m -4)(4xxu(m-2,x +4xu(m-2)xx) 
j = O  

1 + f ( m  - 4 ~ m  -3)(4,2u(m-l)x + 4 x 4 x x ~ m - l ) + z ~ ( m - 3 ) x x x  + (a/t)um-3 

= $(m + l ) ( m  - 4 ) ( m  -6)4:um. (17)  
It follows that if u3 = u4 = U 6  = 0 and the function u2 satisfies the cKdV equation, then 
u5 = 0 and all other functions uj ( j  a 7) vanish. Thus we have obtained the following 
overdetermined system of partial differential equations: 

4x4r+4x2uz+24x4xxx - 5 4 f x  = O  ( 1 8 a )  
(186) 

u~~ + u2uZx +%uzxxx +au2/t  = o ( 1 8 ~ )  
U = - 6 4 : 4 - 2  + 6 ~ j 5 ~ ~ 4 - l  + U > .  ( 1 8 4  

If (18a)-(18c)  are compatible (there are three equations for two fields), then we have 
found a Backlund transformation. To prove this, we set 

1 4 x r  + 4 x x u ~  + ~ 4 x x x x  + (a / t )4x  = 0 

Cpx = v 2  (19)  

V ~ + ~ V X , , + U ~ V ~ + ~ U ~ ~ V = O  (20a 1 
and find by straightforward calculation that 
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v, + 1 v,,, + ; v, v,, v- + U 2 v, + ( a / 2 t )  v = 0. 

;v,,, -;v,V,,v-'= (a/2t)V-1u2,V.  

Eliminating V, we find from (20a)  and (206) 

This equation can be written as 

Integration yields 

V , , V - ' = U X / ( ~ ~ ) - U ~ / ~ + A ( ~ ) .  (23)  

Equation ( 2 3 )  can be written as 

(f(t)D' +f(t)U2/3 - a x f ( t ) / ( 3 [ ) )  v = CL v, (24) 

where we have put A (t)  = p/f( t ) .  We thus have found a candidate for a Lax formulation 
of (18c)  by defining the operators 

L(u2, t )  = f ( t ) ( D 2 + u 2 / 3 - a x / 3 t )  

B ( u ~ ) = ~ D ~ + u ~ D  ++U**. 

Equations (24) and (20a)  then read 

LV=/.LV (26a 1 
V, = -BV. (266 1 

The eigenvalue problem (26a)  is compatible with the time evolution of the eigenfunc- 
tion V given by (266),  if we have the operator identity 

dL/dt = LB - BL, (27) 

where d/dt denotes the derivative with respect to both the explicit time dependence 
of L and the implicit dependence via uz(x, t ) .  Checking (27) with (25a)  and (256) 
we find compatibility only for the two cases a = 0, f ( t )  = 1 or a = 1, f ( t )  = t. The case 
a = 0 corresponds to the K d v  equation and a = t to the cKdv equation. Consequently, 
(18a)-(18d) define a Backlund transformation for the value a = 0 and a = and (25a)  
and (256) are the Lax representations. 

To summarise: we have shown that the Lax representation and a Backlund 
transformation can be obtained for the cKdv equation in a remarkably simple manner 
from the PainlevC property. 
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